I B.Tech - II Semester - Regular/Supplementary Examinations April - 2019

ENGINEERING MECHANICS
 (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Evaluate the magnitude and direction of the resultant force for two like parallel forces of 50 N and 100 N act at the ends of a rod 300 mm long.
b) Two forces of magnitude 15 N and 12 N are acting at a point. The angle between the forces is 60°. Evaluate the resultant in magnitude and direction.
c) Differentiate between angle of friction and cone of friction.
d) Evaluate the centroid of a uniform plate in the form of a symmetrical trapezium whose parallel sides are 3 m and 1.5 m (top side) in length and 2 m apart.
e) State the parallel axis theorem of moment of inertia
f) Formulate the expression for the mass moment of inertia of a bar about an axis through one end and perpendicular to the bar whose length is L .
g) State the principle of virtual work.
h) The motion of a particle is defined by the relation $x=t^{3}-12 t^{2}+36 t+30$, where x is expressed in meters and t in seconds. Determine the time and position when the particle's velocity is zero.
i) Determine the angle of projection for particle which is projected 5 m high with a velocity of $60 \mathrm{~m} / \mathrm{s}$.
j) A fly wheel 1 m diameter accelerates uniformly from rest to 1000 rpm in 20 sec . What is its angular acceleration?
k) State the D'Alembert's principle.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) A rigid prismatic weightless bar $A B$ is supported in a vertical plane by a hinge at the end A and by a horizontal string attached to the bar at D as shown in figure-1. The end B of the bar carries a load W. Evaluate the tension in the string and the direction of the reaction at the hinge in terms of W and θ.

Figure-1
b) A uniform bar $\mathrm{AB}, 10 \mathrm{~m}$ long and weighing 280 N , is hinged at B and rests upon a 400 N block at A as shown in figure-2. If the coefficient of friction is 0.40 at all contact surfaces, Evaluate the horizontal force P required to start moving the 400 N block.

Figure-2
3. a) Determine by direct integration the coordinates of the centroid of the shaded area formed by the quarter of an ellipse as shown in figure-3.

Figure-3
b) A girder of I-shape cross section has equal flanges each 12 cmx 2 cm connected by a web 20 cmx 2 cm . Determine the moment of inertia about its centroidal axes.
4. a) Determine the mass moment of inertia of a circular plate of uniform thickness, about centroidal axis.
b) Using method of virtual work, determine the reaction at A of the beam shown in figure-4.

Figure-4
5. a) A stone is dropped from the top of a tower 60 m high. At the same time another stone is thrown up from the foot of the tower to meet the first stone at a height of 18 m .
Determine i) the time when the two stones meet,
ii) the velocity with which the second stone was thrown up.
b) The pulley shown in figure- 5 weighs 600 N and has a radius of 0.80 m . A rope passing over this pulley supports 800 N load at one end and 400 N at another end. Determine the tension in the string and the angular acceleration of the pulley, if the blocks are allowed to move.

Figure-5
6. a) A body is projected upwards with a velocity of $30 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal. Determine i) The time of flight ii) The range of the body iii) The maximum height attained by the body.
b) A circular cylinder of mass m and radius r is suspended from a cord that is wound around its circumference. If the cylinder is allowed to fall freely, prove that the tension in the cord is equal to that of $1 / 3$ of weight of the drum. Also evaluate the acceleration in terms of acceleration due to gravity.

